Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 6(1): e1459, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22235359

RESUMO

Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this ß-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Paracoccidioides/imunologia , Estresse Fisiológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Proteoma/análise , Reação em Cadeia da Polimerase em Tempo Real
2.
Mycopathologia ; 165(4-5): 249-58, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18777632

RESUMO

Paracoccidioiddes brasiliensis is a thermodimorphic fungus endemic to Latin America, where it causes the most prevalent systemic mycosis, paracoccidioidomycosis (PCM). DNA microarray technology has been used to identify patterns of gene expression when a microbe is confronted with conditions of interest, such as in vitro and/or ex vivo interaction with specific cells. P. brasiliensis is one organism that has benefited from this approach. Even though its genome has not been sequenced yet, much has been discovered from its transcriptome and DNA array analyses. In this review, we will outline the current knowledge in P. brasiliensis transcriptome, with focus on differential expression analysis in vitro and on the discussion of the genes that are controlled during the host-pathogen interaction ex vivo in order to give insights into the pathobiology of this fungus. In vitro experiments enabled the delineation of whole metabolic pathways; the description of differential metabolism between mycelium and yeast cells and of the mainly signaling pathways controlling dimorphism, high temperature growth, thermal and oxidative stress, and virulence/ pathogenicity. Recent ex vivo experiments provided advances on the comprehension of the plasticity of response and indicate that P. brasiliensis is not only able to undergo fast and dramatic expression profile changes but can also discern subtle differences, such as whether it is being attacked by a macrophage or submitted to the bloodstream route conditions.


Assuntos
Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Paracoccidioides , Animais , Proteínas Fúngicas/genética , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Paracoccidioides/patogenicidade , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Virulência
3.
Microbes Infect ; 10(1): 12-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18096424

RESUMO

Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus.


Assuntos
Perfilação da Expressão Gênica , Macrófagos Peritoneais/microbiologia , Paracoccidioides/imunologia , Animais , Apoptose , Células Cultivadas , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Modelos Biológicos , Fagocitose , Fatores de Tempo , Regulação para Cima
4.
FEMS Yeast Res ; 8(2): 300-10, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17927766

RESUMO

Paracoccidioides brasiliensis is a thermo-dimorphic fungus that causes a human systemic mycosis with high incidence in Latin America. Owing to their participation in the control of pathogen morphogenesis, differentiation and virulence, it was decided to characterize ras genes in P. brasiliensis. ras1 and ras2 were identified to be coding for two different proteins with high identity. The ras transcriptional pattern was investigated by reverse transcription PCR (RT-PCR) during mycelium-to-yeast (M-->Y) transition, heat shock at 42 degrees C and after internalization of yeast cells by murine macrophages. Both genes were downregulated inside macrophages and ras1, at 42 degrees C. In contrast, ras genes did not show any transcriptional variation during the M-->Y transition. The fact that Ras proteins are attached to the membrane via farnesylation prompted the use of a farnesyltransferase inhibitor to investigate the importance of this process for vegetative growth and dimorphic transition. Farnesylation blockage interfered with the vegetative growth of yeast cells and stimulated germinative tube production even at 37 degrees C. During Y-->M transition, the inhibitor increased filamentation in a dose-dependent manner, indicating that impaired farnesylation favours the mycelium form of P. brasiliensis. The results suggest that ras genes might have a role in dimorphism, heat shock response and in host-pathogen interaction.


Assuntos
Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Paracoccidioides/citologia , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA Fúngico/química , DNA Fúngico/genética , Temperatura Alta , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Filogenia , Prenilação , RNA Fúngico/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
5.
Microbes Infect ; 9(5): 583-90, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17387029

RESUMO

Paracoccidioides brasiliensis, a thermal dimorphic fungus, is the etiologic agent of the most common systemic mycosis in Latin America, paracoccidioidomycosis. The yeast form of P. brasiliensis acts as a facultative intracellular pathogen being able to survive and replicate within the phagosome of nonactivated murine and human macrophages. This ability has been proposed to be crucial to the development of disease. Thus, P. brasiliensis may have evolved mechanisms that counteract the constraints imposed by phagocytic cells. By using cDNA microarray technology we evaluated the early transcriptional response of this fungus to the environment of peritoneal murine macrophages in order to shed light on the mechanisms used by P. brasiliensis to survive within phagocytic cells. Of the 1152 genes analyzed, we identified 152 genes that were differentially transcribed. Intracellularly expressed genes were primarily associated with glucose and amino acid limitation, cell wall construction, and oxidative stress. For the first time, a comprehensive gene expression tool is used for the expression analysis of P. brasiliensis genes when interacting with macrophages. Overall, our data show a transcriptional plasticity of P. brasiliensis in response to the harsh environment of macrophages which may lead to adaptation and consequent survival of this pathogen.


Assuntos
Perfilação da Expressão Gênica , Macrófagos/microbiologia , Paracoccidioides/genética , Paracoccidioides/metabolismo , Transcrição Gênica , Animais , DNA Fúngico/análise , Regulação Fúngica da Expressão Gênica , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries
6.
BMC Genomics ; 7: 208, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16907987

RESUMO

BACKGROUND: Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. RESULTS: In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation - cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-beta-glucosidase) in mycelium cells; and ags (an alpha-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport - two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells - isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. CONCLUSION: Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Micélio/genética , Paracoccidioides/genética , Leveduras/genética , Transporte Biológico/genética , Northern Blotting/métodos , Proteínas de Transporte de Cátions/genética , Parede Celular/genética , Parede Celular/metabolismo , Cisteína/biossíntese , Citoesqueleto/genética , Citoesqueleto/metabolismo , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Íons/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Leveduras/citologia , beta-Glucosidase/genética
7.
J Biol Chem ; 280(26): 24706-14, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15849188

RESUMO

Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a disease that affects 10 million individuals in Latin America. This report depicts the results of the analysis of 6,022 assembled groups from mycelium and yeast phase expressed sequence tags, covering about 80% of the estimated genome of this dimorphic, thermo-regulated fungus. The data provide a comprehensive view of the fungal metabolism, including overexpressed transcripts, stage-specific genes, and also those that are up- or down-regulated as assessed by in silico electronic subtraction and cDNA microarrays. Also, a significant differential expression pattern in mycelium and yeast cells was detected, which was confirmed by Northern blot analysis, providing insights into differential metabolic adaptations. The overall transcriptome analysis provided information about sequences related to the cell cycle, stress response, drug resistance, and signal transduction pathways of the pathogen. Novel P. brasiliensis genes have been identified, probably corresponding to proteins that should be addressed as virulence factor candidates and potential new drug targets.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Micélio/metabolismo , Paracoccidioides/metabolismo , Transcrição Gênica , Northern Blotting , DNA Complementar/metabolismo , Regulação para Baixo , Etiquetas de Sequências Expressas , Biblioteca Gênica , Internet , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Paracoccidioides/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...